
Computer Science 120
Introduction to Programming
Siena College
Spring 2011

Topic Notes: Arrays

Our next major topic involves naming collections of items. But first, we will look at a loop con-
struct that we will make use of in that context.

for Loops
We have usedwhile loops in a number of contexts, one of which is for counting. For example,
in the falling snow example, we had the followingrun method:

int snowCount= 0;

// continue creating snow until the maximum amount
// has been created
while (snowCount < MAX_SNOW) {

snowCount = snowCount + 1;

new FallingSnow(canvas, snowPic,
snowGen.nextValue(), // x coordinate
snowGen.nextValue()*2/canvas.getWidth()+2); // y speed

pause(FLAKE_INTERVAL);
}

If we carefully examine the loop in the falling snow example above, we can see that it has the
following structure:

int counter = 0;
while (counter < stopVal)
{

// do stuff
counter++;

}

It turns out that we can use a different construct that localizes the code dealing with counting so
that it is easier to understand. This construct is called afor loop. You would use it for counting
by saying the following:

CS 120 Introduction to Programming Spring 2011

for (int counter = 0; counter < stopVal; counter++)
{

// do stuff - but omit counter++ at end
}

The code in the parentheses consists of 3 parts; it is not justa condition as inif or while
statements. The parts are separated by semicolons. The firstpart is executed once when we first
reach thefor loop. It is used to declare and initialize the counter. The second part is a condition,
just as inwhile statements. It is evaluated before we enter the loop and before each subsequent
iteration of the loop. It defines the stopping condition for the loop, comparing the counter to the
upper limit. The third part performs an update. It is executed at theend of each iteration of the
for loop, just before testing the condition again. It is used to update the counter.

How would we rewrite the falling snow example to use afor loop?

See Example: FallingSnowFor

Essentially we have taken three lines from the abovewhile loop version and combined them into
one line of thefor loop version. Because we included the declaration of the counter inside the
loop (see “int snowCount”), it is only available inside the loop. If you try to use it outside of
the loop, Java will claim to have never heard of a variable with that name.

Notice how the for localizes the use of the counter. This has two benefits. First, it simplifies the
body of the loop so that it is somewhat easier to understand the body. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequentlythroughout the remainder of the
course. For example, we couldcount down instead of up:

for (int countdown = 10; countdown >= 1; countdown--)
{

System.out.println(countdown);
}
System.out.println ("Blast off!");

Summary of for loops

The general structure of afor statement is the following:

for (<initialization>; <condition>; <update>)
{
<code to repeat>

}

2

CS 120 Introduction to Programming Spring 2011

• The initialization part is executed only once, when we first reach thefor loop.

• The condition is executed before each iteration, includingthe first one.

• The update part is executed after each iteration, before testing the condition.

When should you use afor loop instead of a while loop:

• Definitely use for loops when counting!

• Initialization, condition, update all are expressed in terms of the same variable

• The variable is not modified elsewhere in the loop.

• It is correct to do the update command as the last statement inthe body of the loop.

Arrays
Sometimes we have a lot of very similar data, and we would liketo do similar things to each datum.
For example, suppose we wanted to extend our “Drag2Shirts” example to have 4 shirts instead of
just 2.

See Example: Drag2Shirts

We could go through the program and everywhere we seeredShirt andblueShirt, add 2
more variables and 2 more segments of code to deal with the new2 shirts.

See Example: Drag4Shirts

That was not terribly painful, but a bit tedious and error prone. Now, what if we wanted to create
10, 20, or 100 shirts to be dragged around the canvas. We’d want a better way to name the shirts
as a group.

In mathematics this is done by attaching subscripts to names. We can talk about numbersn1, n2,...
We want to be able to do the same thing with computer languages. The name for this type of group
of elements is anarray.

Suppose we wish to have a group of elements all of which have typeThingAMaJig and we wish
to call the groupthings. Then we write the declaration ofthings as

ThingAMaJig[] things;

The only difference between this and the declaration of a single item of typeThingAMaJig is
the occurrence of “[]” after the type.

Like all other objects, a group of elements needs to be created:

3

CS 120 Introduction to Programming Spring 2011

things = new ThingAMaJig[25];

Again, notice the square brackets. The number in parentheses (25) indicates the maximum number
of elements that there are slots for. We can now refer to individual elements using subscripts.
However, in programming languages we cannot easily set the subscripts in a smaller font placed
slightly lower than regular type. As a result we use the ubiquitous “[]” to indicate a subscript.
If, as above, we definethings to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscripts at0, and hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subscriptsgo from 0 to 24.

One warning: When we initialize an array as above, we only create slots for all of the elements,
we do not necessarily fill the slots with elements. Actually,the default values of the elements of
the array are the same as for instance variables of the same type. If ThingAMaJig is an object
type, then the initial values of all elements isnull, while if it is int, then the initial values will
all be0. Thus you will want to be careful to put the appropriate values in the array before using
them (especially before sending message to them! – that’s aNullPointerException waiting
to happen).

Armed with this new construct, let’s augment the shirt dragging program to be able to drag around
more shirts.

See Example: Drag10Shirts

In this code, we we have a single array namedshirts. This array is declared as an instance
variable, constructed at the start of thebegin method, and given values (references to actual
TShirts) just after.

Then in theonMousePress method, we loop through all of the array entries to determinewhich,
if any, has been pressed. Finally, inonMouseExit, we tell all of the shirts to move back to their
starting positions.

In this example, we have used an array to keep track of a collection of objects on the canvas. We
can also use an array to keep track of the components of a custom object.

In our final enhancement to this example, we draw the t-shirtsin two rows and use a fixed array of
colors for the shirts instead of random colors.

See Example: Drag10ShirtsNicer

A few things to notice here:

• We have an array ofColors initialized to 10 pre-defined color names that we’ll use forour
10 t-shirts.

• The construction of the t-shirts takes place in a nested loopto make it easier to organize them
into 2 rows of 5 shirts each.

4

CS 120 Introduction to Programming Spring 2011

Our next enhancement to this example is to draw and drag around 20 shirts, now in 4 rows of 5.

See Example: Drag20Shirts

Most of the program works correctly just by changing the value of the constantNUM ROWS (yay
constants). But...the array of colors is not large enough.

We account for this by reusing the colors once we’ve run out. This is accomplished with some
modulo arithmetic:

shirts[shirtNum].setColor(shirtColors[shirtNum % shirtColors.length]);

Arrays in Custom Objects

Arrays can be used to store any of the data types we have considered, and can be used in anywhere
we use regular variables.

First, we look at a program that doesn’t use arrays:

See Example: DrawRoads

This program draws little segments of roads when we click themouse. Nothing is new here – we
could have written this a while ago.

But now suppose we want to be able to drag one of these around.

We need to have names for all of the components of the road segment so we can do things like
move it and check for containment of a point.

See Example: DragRoads

The enhancements to theWindowController class are all very familiar.

It’s in theRoadSegment class that we make use of an array to hold the center stripes ofour road
segment. Notice the same steps: declare a variable with an array type, construct it withnew, then
fill in the entries with the appropriate types of objects.

In the constructor, we do the construction of the array (we first compute the number of stripes we’ll
draw, so we know how how big to make the array), then create theactual stripes.

In themove method, we loop through the stripes, moving each one.

Notice there that we need to know how many elements are in our array, but the variable we used
back in the constructor (numStripes) has gone out of scope and is no longer available. Fortu-
nately, arrays in Java come with this information as standard equipment. After any array has been
constructed, its length can be determined by using the.length field.

A few words of caution here:

• We have taken care to make our array exactly large enough to hold the number of objects
we placed in it. If we attempted to put an object intocenterStripes[5] after con-
structing it to have 5 slots (which, remember, are numbered 0through 4), we would get an

5

CS 120 Introduction to Programming Spring 2011

ArrayIndexOutOfBoundsException. Basically, your program would crash in the
same way you’ve all seen withNullPointerExceptions.

• It is perfectly legal to have an array of a given size but to useonly some of the slots to
store objects. However, we need to be careful not to attempt to use the values in those
slots – they’ll benull. The.length value is the number of slots in the array when we
constructed it, not the number of its slots that contain actual data.

This is nice, but perhaps we want to combine this functionality with that of the program where we
could drag around any of 10 shirts. Let’s use an array to keep track of all of the road segments
we’ve created, so we can dragany segment, not just the most recently drawn one.

See Example: DragAllRoads

Here, in addition to having an array to keep track of the components of one of the road segments,
we keep an array ofRoadSegment objects in theWindowController class.

The arraysegments is declared as an instance variable and is constructed in thebegin method,
large enough to hold 4RoadSegment object references. Since the number of objects we’ll store
is not predetermined, we have a decision to make.

Some factors to consider:

• Once we construct an array (i.e., new), its size cannot be changed. If we wish to change the
size of the array, we need to construct a new array, copy the contents of the old array to the
new, then throw away the old array.

• If we make the array too large to start and we never use most of the slots, we have wasted
that space.

• If we make the array too small, we will quickly need to construct a new, larger one and copy
over the contents.

The solution used here is to start with a fairly small array (4), but then double it in size each time
it fills up.

Another Example

See Example: DragStudents

What you’ve been waiting for: being the stars of a program.

This is another “drag objects around” example, but this timethe objects being dragged are your
pictures.

In this example, we place the objects randomly on the canvas,but take some care to make sure they
do not overlap at all. Notice the helper methodoverlapsAny that helps ensure this.

Any image being dragged is also made larger while it’s being dragged.

6

CS 120 Introduction to Programming Spring 2011

Other than that, it’s similar to dragging 10 shirts.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep track of when using arrays, especially when
objects are being added. We need to manage both the size of thearray and the number of items
it contains. If it fills, we either need to make sure we do not attempt to add another element, or
reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let’s consider two more situations and how we need
to deal with them: adding a new item in the middle of an array, and removing an item from the
end.

For these examples, we will not use graphical objects, just numbers. Arrays can store numbers just
as well as they can store references to objects.‘

Suppose we have an array ofint large enough to hold 20 numbers.

The array would be declared as an instance variable:

private int[] a;

along with another instance variable indicating the numberof ints currently stored ina:

private int count;

and constructed and initialized:

a = new int[20];
count = 0;

At some point in the program,count contains 10, meaning that elements 0 through 9 ofa contain
meaningful values.

Now, suppose we want to add a new item to the array. So far, we have done something like this:

a[count] = 17;
count++;

This will put a 17 into element 10, and increment thecount to 11.

But suppose that instead, we want to put the 17 into element 5, and without overwriting any of the
data currently in the array. Perhaps the array is maintaining the numbers in order from smallest to
largest.

In this case, we’d first need to “move up” all of the elements inpositions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and then incrementcount.

7

CS 120 Introduction to Programming Spring 2011

If the variableinsertAt contains the position at which we wish to add a new value, and that new
value is in the variableval:

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}
a[insertAt] = val;
count++;

Now, suppose we would like to remove a value in the middle. Instead of “moving up” values to
make space, we need to “move down” the values to fill in the holethat would be left by removing
the value.

If the variableremoveAt contains the index of the value to be removed:

for (int i=removeAt+1; i<count; i++) {
a[i-1] = a[i];

}
count--;

The loop is only necessary if we wish to maintain relative order among the remaining items in the
array. If that is not important (as is often the case with our graphical objects), we might simply
write:

a[removeAt] = a[count-1];
count--;

8

